Spectral Estimation and Wiener Filtering
نویسنده
چکیده
6. Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Random processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Random processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Nonnegativity and nonnegative definiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Pairs of random processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Random processes through LSI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.8 The noncausal Wiener filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.10 Stronger optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.13 Spectral estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.14 Conventional methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.14 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.15 Autocorrelation functions continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.16 2nd-order statistics an incomplete story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.17 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.17
منابع مشابه
Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملResearch on LASCA and Denoising of Blood Vessel images of Small Animals
-A denoising approach is proposed that based on the combination of wiener filtering, order-statistic filtering and wavelet, which denoise the LASCA(LAser Speckle Contrast Analysis)image of blood vessels in small animal. The approach first performs laser spectral contrast analysis on cerebral blood flow and brain blood flow in rat, get their spatial and temporal contrast images. Then, a denoisin...
متن کاملJoint stochastic-deterministic wiener filtering with recursive Bayesian estimation of deterministic speech
Stochastic-deterministic (SD) speech modelling exploits the predictability of speech components that may be regarded deterministic. This has recently been employed in speech enhancement resulting in an improved recovery of deterministic speech components, although the improvement achieved is largely dependant on how these components are estimated. In this paper we propose a joint SD Wiener filt...
متن کاملDistortion effects of several cumulant-based wiener filtering algorithms
Some Single-Microphone Speech Enhancement algorithms based on the iterative Wiener filtering Method due to LimOppenheim [2] are evaluated. In the original Lim-Oppenheim algorithm, AR spectral estimation of speech is carried out using a second-order analysis, but our algorithms consider an AR estimation from a cumulant analysis. This work extends some preceding papers due to the authors [4], [5]...
متن کاملRobust Filtering Based on Probabilistic Descriptions of Model Errors
A new approach to robust estimation of signals and prediction of time{series is considered. Signal and system parameter deviations are represented as random variables, with known covariances. A robust design is obtained by minimizing the squared estimation error, averaged both with respect to model errors and noise. A polynomial solution, based on averaged spectral factor-izations and averaged ...
متن کامل